Oct. 2021

ISSN 0917-2211

Variable Star Bulletin

Algol-type system RZ Cas: Times of primary minima by different methods

Shin-ya Narusawa

Center for Astronomy, University of Hyogo, Sayo-cho, Hyogo, 679-5313, Japan narusawa@nhao.jp

and

Kazuo Nagai

Variable Star Observers League in Japan

Received 2021 Oct. 02

RZ Cas is one of the famous Algol-type binary systems whose primary constituent is the δ Sct-type pulsator. Ohshima et al. (2001) discovered that the observed light curve at the primary minimum was a synthesis of the light variation of the partial eclipse and that of the short-period quasi-regular variation. They classified the light curves at the primary minimum into three types: the "F-type" with a flat-bottom (total eclipse-like); the "V-type" with a V-shaped curve; and the "S-type" with a slant increasing or deceasing smoothly. Moreover, the subtypes "Sa" and "Sb" were classified which indicate an ascending slant and a descending one respectively. According to the explanation of Ohshima et al (2001), when the light maximum of pulsation coincides with the center of eclipse, the F-type is observed. When the light minimum of oscillation passes the mid-primary eclipse, the V-type light curve is observed. The intermediate case is the S-type.

RZ Cas is also well-known for its irregular and sudden period change (SPC)s. How much influence on the (O-C) values of this system do different methods of determining mid-eclipse times have? We determined the mid-time for the same light curve utilizing six methods, Kwee & van Woerden (KW) method (Kwee & van Woerden 1956), AVE and Peranso spline¹, bisection, Parabolic Fit, Tracing Paper, and Fourier Fit. The latter three methods were derived by Minima25c programs ². Ohshima et al. (2001)'s light curves were used in order to check all eclipse shapes (V, F, Sa, and Sb). Because these shapes were observed in a short time (one season).

The results are shown in Table 1, and this points that differences between maximum and minimum values are within one minute $(7 \times 10^{-4} \text{ days})$ in each shape. In other words, the different methods have little influence on the (O-C) values. As a conclusion, types of method have no relation with the SPC.

We are indebted to Osamu Ohshima for useful comments, and to Yusuke Taguchi for his kind help.

Reference:

Kwee, K.K., & H van Woerden, H. 1956, Bulletin of the Astronomical Institutes of the Netherlands, 12, 464 Ohshima, O., Narusawa, S., Akazawa, H., Arai, K., Fujii, M., Kawabata, T., Morikawa, K., Ohkura, N., & Takeuti, M. 2001, AJ, 122, 418

¹ https://www.cbabelgium.com/peranso/

² https://www.variablestarssouth.org/minima25c/

Shape	Filter	HJD	KW	KW	Parabolic	Tracing	Fourie	$Bisection^a$	ΔT^b
			(AVE)	(Peranso)	Fit	Paper			
		2450000 +							(sec)
Р	V	826	.0127(1)	.01319(8)	.0126(5)	.0126(1)	.0127(1)	.0125	60
V	B	777	.0063(1)	.00625(7)	.006(1)	.0062(1)	.0062(1)	.0065	26
F	V	747	.1249(1)	.12475(8)	.12510(5)	.1251(1)	.1251(1)	.1252	39
\mathbf{Sa}	B	747	.12475(8)	.12480(6)	.12480(4)	.1248(1)	.1249(1)	.1247	17
\mathbf{Sb}	V	808	.08299(9)	.08276(5)	.0830(1)	.0832(1)	.08320(4)	.0829	37

Table 1: Times of primary minima determined for all shapes by several methods.

a: determined by Ohshima et al. (2001)

b: difference between maximum and minimum values

VSOLJ c/o Keiichi Saijo National Science Museum, Ueno-Park, Tokyo Japan

Editor Seiichiro Kiyota e-mail:skiyotax@gmail.com