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Abstract

In Kato and Uemura (2012), we introduced the Least Absolute Shrinkage and Selection Operator (Lasso)
method, a kind of sparse modeling, to study frequency structures of variable stars. A very high frequency
resolution was achieved compared to traditional Fourier-type frequency analysis. This method has been
extended to two-dimensional frequency analysis to obtain dynamic spectra. This two-dimensional Lasso
frequency analysis yielded a wide range of results including separation of the orbital, superhump and negative
superhump signals in Kepler data of SU UMa stars. In this paper, I briefly reviewed the progress and
applications of this method. I present a full R code with examples of its usage. This code has been confirmed
to detect the appearance of the orbital signal and the variation of the spin period after the eruption of the nova
V1674 Her. This code also can be used in multidisciplinary purposes and I provide applications to analysis of
avian vocalizations. I found fine structures in the call of the Eurasian wren (Troglodytes troglodytes), which
is likely to be used species identification. This code would be a new tool in studying avian vocalizations with
high temporal and frequency resolutions. Interpretations of the power spectra of avian vocalizations will also
be helpful in interpreting the power spectra of variable stars.

1 Introduction

Frequency analysis is essential in many fields of science. In astronomy (I particularly deal with period/frequency
analysis of variable stars), many types methods have been used. Fourier-type methods include discrete Fourier
transform (Deeming 1975), least-squares fit of sinusoids for unevenly spaced data (Lomb-Scargle Periodogram,
Scargle 1982; Horne and Baliunas 1986; Zechmeister and Kürster 2009) and CLEAN algorithm (Roberts et al.
1987). They are related to a variety of Cohen’s class transformations for evenly sampled data, which include
short-time Fourier transform (STFT), wavelet transform and Wigner-Ville distribution (Hlawatsch and Auger
2008). These methods give generally the same frequency resolution given by the Heisenberg-Gabor limit.

There are also methods by evaluating dispersions in phase-sorted or phase-binned data. This class of approach
includes the string-length method (Dworetsky 1983), Lafler-Kinman’s method (Lafler and Kinman 1965), Phase
Dispersion Minimization (PDM, Stellingwerf 1978) and Analysis of Variance (AoV, Schwarzenberg-Czerny 1989).
These methods give an estimate with a smaller error than Cohen’s class transformations for the frequency/period
when a single signal is present (Fernie 1989; Kato et al. 2010). These methods are advantageous over Cohen’s
class transformations for a non-sinusoidal signal, which is usual for variable stars.

In recent years, a completely new approach in Fourier-type analysis has developed with an assumption that
only small number of frequencies are present at the same time (condition usually called “sparse”). This is an



2

application of a rapidly developing field of compressed sensing (e.g. Donoho 2006). Under this assumption,
we can, in principle, break the Heisenberg-Gabor limit [A simple explanation why the Lasso-type analysis can
overcome the Heisenberg-Gabor limit in a different field of science can be found in Herman and Strohmer (2009)].
In Kato and Uemura (2012), we applied the least absolute shrinkage and selection operator (Lasso), a form of
compressed sensing to frequency analysis of astronomical time-series observations (also called “sparse Fourier”
analysis). This method has a resolution superior to Cohen’s class transformations and Lafler-Kinman’s class
methods, and is particularly useful in separating closely spaced multiple frequency components, such as the
orbital signals and superhumps signals in SU UMa-type dwarf novae.

For studying frequency variations, two-dimensional frequency analysis (dynamic spectrum) is used. For
evenly sampled data, STFT is usually used (e.g. Still et al. 2010). Although Kato and Uemura (2012) presented
a code for single-epoch analysis, two-dimensional frequency analysis using Lasso has been employed and various
results have been published (Kato and Maehara 2013; Osaki and Kato 2013; Kato and Osaki 2013a,b; Osaki
and Kato 2014; Kato et al. 2014b; Ohshima et al. 2014; Kato et al. 2014a; Pavlenko et al. 2014; Kato et al.
2015b; Kato et al. 2015a; Kato et al. 2016; Niijima et al. 2021). In Osaki and Kato (2013, 2014), Lasso analysis
played an important role in demonstrating the conclusion that the thermal-tidal instability model (Osaki 1989)
is the only viable model to explain superoutbursts in SU UMa stars. In these series of papers, we have shown
that Lasso analysis is advantageous in several respects: (1) the resultant signal is very sharp, (2) the frequency
resolution is very high, and (3) the result is less affected by uneven sampling than in Fourier analysis. The last
point is particularly important in real astronomical data, in which observations can usually be obtained unevenly
in time. Comparisons of spectrograms between STFT and Lasso-based Fourier analysis are shown in Osaki and
Kato (2013); Kato and Osaki (2013a); Kato and Maehara (2013). The advantage of Lasso or sparse modeling
in Fourier-type application has been extended to super-resolution imaging with radio interferometry by Honma
et al. (2014).

Considering that two-dimensional frequency analysis using Lasso is useful not only in astronomy but also in
other fields of science, I present a multi-purpose full code to calculate and draw two-dimensional Lasso spectral
analysis. The code was originally written for Kato and Maehara (2013), and has been modified here for more
general purposes.

2 Methods

The simplified mathematical basis of our Lasso analysis is given here. For a more complete treatment and
comparison with other frequency determination algorithms, please refer to Kato and Uemura (2012). This
mathematical basis is not always necessary to use the code, and readers can skip this section to understand
actual applications and to learn how to use the code.

The mathematical formulation, which is based on Tanaka (2010). The data (in amplitude) have Y (ti) with
times of observations at ti. The mean of Y is set to be zero. The observation can be expressed as a sum of signal
(Ys) and random errors (n) :

Yi = Y (ti) = Ys(ti) + n(ti). (1)
The signal is assumed to be composed of a sum of strictly periodic functions. Using sine and cosine Fourier
components, Ys can be expressed as :

Ys(ti) =
∑
j

aj cos(ωjti) +
∑
j

bj sin(ωjti), (2)

where ω are frequencies and a and b are amplitudes. This equation can be rewritten as

y = (Y1, · · · , YN )T (3)

and
x = (a1, · · · , aM , b1, · · · , bM )T, (4)

where N and M are number of observations and number of different ω, respectively. A set of equations 1 and 2
can be rewritten as a form of

y = Ax+ n (5)
using a 2M ×N observation matrix A composed of

Ai,j =

{
cos(ωitj), (i ≤ M)
sin(ωi−M tj), (i > M). (6)



3

The vector x0 is what to be estimated.
In Lasso, “1-norm” is used, which is ||x||1 ≡

∑N
i=1 |xi|, and x̂LAR:

x̂LAR = argmin
x

(
1

2N
||y −Ax||2 + λ||x||1), (7)

where ||y−Ax||2 is the ordinary squared sum of residuals, is chosen, and λ||x||1 is the ℓ1-norm penalty function
with a parameter λ having a value of λ ≥ 0. argminx f(x) means the value of x which minimizes f(x). This
estimate becomes identical with a least-squares estimation at λ = 0. It has been known that this ℓ1 regularization
provides a sparse solution (small number of non-zero elements in x0) in most cases (cf. Donoho 2006; Candes
and Tao 2006) and there is a fast algorithm, known as least angle regression (LAR) by Efron et al. (2004) to
solve this problem.

In this Lasso analysis, I used LAR implementation lars package by Efron et al. (2004) on R software1
combined with glmnet (generalized linear model via penalized maximum likelihood; Friedman et al. 2010) as a
wrapper.

3 Application to frequency analysis of variable stars

3.1 Usage of the code

Since previous applications in research of variable stars are already given in section 1, I only provide an example
to run a code. Assuming that readers have the data of KIC 8751494 (Kato and Maehara 2013) as a form of a
plain text with BJD−2400000 and magnitudes ready to read with R, the analysis can be done with:

source("lassobase.R")

dat <- read.table("datafile")

x <- dat$V1 - mean(dat$V1)

le <- lowess(x,dat$V2,f=0.05)

res <- dat$V2 - le$y

tab <- data.frame(V1=dat$V1,V2=res-mean(res))

pgm <- getpergrmlasso2(tab,56106,56205,1/0.130,1/0.105,200,10,1)

The second part is for prewhitening the data using the locally-weighted polynomial regression (LOWESS: Cleve-
land 1979). This part needs to be modified depending on the complexity of the light curve. This is particularly
important for analyzing light curves of dwarf novae. In papers such as Osaki and Kato (2013), we used a very
small smoother span (f in function lowess) and a small delta in the LOWESS regression to remove the global
patterns of outbursts in dwarf novae and processed the entire data as a whole. This prescription led to favorable
results for many dwarf novae despite that the amplitudes of the target signals (superhumps, orbital variations and
others) are greatly reduced. To conserve the amplitudes of the target signals, it is better to divide the entire light
curve to shorter segments so that the LOWESS regression requires a larger f (typically larger than 0.1) to obtain
sufficiently prewhitened segments but with well-conserved target signals. These short segments are combined to
obtain the prewhitened entire data for the two-dimensional Lasso analysis.

The second and third arguments for getpergrmlasso2 gives the time range, and the fourth and fifth for the
frequency range (c/d in this case). The sixth argument 200 is the number of frequency bins, the seventh 10 is
the window length and the final 1 is the shift value for the windows. The resultant pgm can be saved using save

function in R for further analysis or graphical representation. The result pgm can be readily seen on graphical
window by

drawpgmlasso(pgm,-2.7,-13,-6,3)

The second argument −2.7 is log10 λ and the third and fourth −13 and −6 are the display range of the power
strength (in logarithmic scale) and the final 3 is time bins to smear (use 0 when no smearing is needed). The
R graphical window would look like figure 1. The λ value can be optimized by looking at the resultant two-
dimensional spectrogram by changing the gray scale (by changing the display range of power strength), examining

1 The R Foundation for Statistical Computing: <http://cran.r-project.org/>.
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Figure 1: Example of graphical representation of two-dimensional Lasso analysis on R using the code presented
in this paper. Kepler data of KIC 8751494 were used (see Kato and Maehara 2013). The signal at 8.74 c/d is
the orbital signal. The varying signal between 8.0 and 8.2 c/d is the superhump signal. See text how to produce
this figure.
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whether target frequencies are well visible above the background noise. The list of different values of λ by lars is
stored in the vector pgm$lst[[i]]$lassopow$lambda, where i is the bin number (1 ≤ i ≤ length(pgm$lst)),
and one can find an adequate range of log10 λ by using these values. One can also draw a spectrogram of a
specified element (n) within a series of different λ given by lars by setting the argument loglambda to FALSE:

drawpgmlasso(pgm,n,-13,-6,3,loglambda=FALSE)

(n must be an integer and 1 ≤ n ≤ length(pgm$lst[[i]]$lassopow$lambda)). By changing n, one can easily
find the optimal λ.

Although one can use the popular cross-validation technique to obtain λ expressing the most regularized
model (see Kato and Uemura 2012), this is not always optimal for actual applications. This is probably because
the model using sine and cosine functions is too simple for describing the real variation.

3.2 Application to the super-fast nova V1674 Her

I give another example of a Lasso two-dimensional power spectrum of the fastest known nova V1674 Her. This nova
was discovered by Seiji Ueda on 2021 June 12,2 and is the fastest ever recorded classical nova with t2 ∼ 1.2 d
(Quimby et al. 2021). This nova was reported to show coherent pulses with a period of 501.428 s in Zwicky
Transient Facility (ZTF; Masci et al. 2019) data before the eruption (Mroz et al. 2021) and this period is
considered to reflect the spin period of white dwarf. In addition to this period, orbital modulations with a
period of 0.15302(2) d was identified after the nova eruption (Shugarov and Afonina 2021a; Patterson et al. 2021;
Shugarov and Afonina 2021b). Patterson et al. (2021) reported a spin period of 501.52(2) s after the eruption.
This value is 0.09(2) s longer than the value before the eruption and is consider to be a consequence of the nova
eruption, either by an increase in the moment of inertia or by a loss of mass that carried away angular momentum
(Drake et al. 2021).

I examined whether these signals can be seen in Lasso two-dimensional power spectra. I used the data
reported to VSNET Collaboration (Kato et al. 2004) (observers: Tonny Vanmunster, Michael Richmond, Stephen
Brincat, Charles Galdies and Franz-Josef Hambsch). The analysis presented here is preliminary and is planned
to appear in VSNET Collaboration in prep. with more details. In the middle panel of figure 2, the signal of the
orbital period appeared around BJD 2459420 (∼40 d after the eruption). There was some hint of modulations
with a frequency slightly lower than that of the orbital signal before BJD 2459410. This signal has a period
longer than the orbital period and may be some sort of superhumps, although the data were not sufficient to
draw a conclusion. In the lower panel of figure 2, a spin frequency was detected below the one observed before the
eruption. This has confirmed the results by Drake et al. (2021). Although period variations of the order of 0.1–
0.3 s suggested from X-ray observations (Drake et al. 2021) were not apparent, the Lasso analysis suggests that
the spin frequency had a tendency to return to the frequency before the nova eruption. This may be supportive
of an idea that the decrease in the spin frequency was the result of the increase in the moment of inertia due to
the nova explosion.

4 Application to frequency analysis of vocalization of birds

4.1 General introduction and usage of the code

In analyzing vocalizations of birds, two-dimensional Fourier power spectra (sonograms) have been widely used
(e.g. Marler and Slabbekoorn 2004). STFT is usually used to construct two-dimensional spectra. Both open-
source, cross-platform audio software audacity3 , or software specially designed for analysis of vocalizations of
birds Raven Lite4 can produce research-grade sonograms. On R, dynspec function in seewave package5 can
produce a two-dimensional STFT power spectrum both as a form of matrix and graphical representation. They
are sufficient to study sonograms of vocalizations of birds in many situations.

Although this method is well-established in bioacoustic studies of birds, time resolutions or frequency resolu-
tions limited by the Heisenberg-Gabor limit (section 1; see also Beecher 1988) could become a problem especially
when the durations of sounds are short. In analysis of song features, frequency tracking or methods on focusing

2 <http://www.cbat.eps.harvard.edu/unconf/followups/J18573095+1653396.html>.
3 <https://www.audacityteam.org/>
4 <https://ravensoundsoftware.com/software/raven-lite/>.
5 <https://cran.r-project.org/web/packages/seewave/index.html>.
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Figure 2: Lasso two-dimensional power spectrum of the nova V1674 Her. The data were from observations
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on the main frequency have been applied to overcome this difficulty (Gall et al. 2012; Stowell and Plumbley 2012,
2014). Such methods, however, can have difficulties in handling sounds with multiple frequency components.
Furthermore, it has been demonstrated that ultrafast (over 200 Hz) movements of vocal muscles control birdsong
in certain species (Elemans et al. 2008). In such vocalizations, the duration of each note is about 1 msec. Even
the optimal selection of parameters can give a frequency resolution of 1 kHz by the traditional STFT method,
and it may not be adequate for tracing the variation of frequencies within individual notes. Elemans et al. (2008)
indeed employed the sound strength as a tracer of vocalization, but if we could trace the frequency variation, it
would provide more information about the characteristic of notes and mechanisms to produce and control these
sounds.

In order to analyze vocalizations of birds by the present code, the sound data either in linear pulse code
modulated audio (LPCM) format or conventional compressed format such as MP3 need to be read just like
time-series data for variable stars. For reading LPCM wav format files, readWave function in tuneR package6
is useful. The actual code would be like:

library(tuneR)

source("lassobase.R")

s <- readWave("wren.wav",from=0,to=2,units="seconds")

y <- s@left

rate <- s@samp.rate

y <- y - mean(y)

x <- (1:length(y))/rate * 1000

d <- data.frame(V1=x,V2=y)

pgm <- getpergrmlasso2(d,1390,1425,2,16,100,2,0.4)

In this example, I used a call of an Eurasian Wren (Troglodytes troglodytes) recorded locally in Japan using a
SONY recorder ICD-SX1000 in the LPCM mode (96 kHz/24-bit). The usage of getpergrmlasso2 would be
self-evident when compared to section 3. In sound analysis, the times are given in msec and frequencies are
given in kHz. In order to obtain a graphical representation drawpgmlasso is used as in analysis of variable stars.
In sound analysis, the amplitudes are usually much larger than in variable stars (of course, depending on the
definition of the amplitudes) and λ and the display range have larger values. In this case,

drawpgmlasso(pgm,2.7,7,12,3,xlab="Time (msec)",ylab="Frequency (kHz)")

yielded a sonogram of optimal quality. The parameters xlab and ylab are necessary to override the default values
designed for study of variable stars.

For MP3 files, readMP3 in tuneR package can be used instead:

library(tuneR)

source("lassobase.R")

s <- readMP3("sound.mp3")

y <- s@left

rate <- s@samp.rate

y <- y - mean(y)

x <- (1:length(y))/rate * 1000

d <- data.frame(V1=x,V2=y)

and the usage of drawpgmlasso is the same as the case as with LPCM recordings. I must note, however,
the quality of MP3 files are highly variable depending on recording devices and the MP3 compression quality.
Although the use of LPCM recordings is highly recommended, MP3 files recorded by suitable recorders with
high-quality compressions (such as at 320 kbps) can be used in frequency analysis usually without a problem.

In the following subsections, I describe selected results of analysis of vocalizations of birds by this code. They
may be useful not only to biologists but also to astronomers to interpret the features in Lasso spectrograms. The

6 <https://cran.r-project.org/web/packages/tuneR/index.html>.
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data used for this analysis were either recorded by myself in the LPCM mode or from xeno-canto public archive7
(recording numbers are given after XC). The current archive of xeno-canto consists of MP3 recordings and I used
relatively high-quality ones.

4.2 Birdsong with frequency modulations

I used a song of a Common Chiffchaff (Phylloscopus collybita) (XC214244) for a comparison between STFT
and Lasso spectrograms (figure 3). This song contains only one fundamental tone and shows strong frequency
modulations. Since birdsong usually has a broader range of frequency modulations than in many astronomical
signals, the advantage of Lasso analysis in high frequency resolution is less apparent than in a similar comparison
in Kato and Maehara (2013). The frequencies, however, were detected as much sharper signals than in the STFT
analysis. This result is as sharp as those by frequency extraction methods reported in Stowell and Plumbley
(2014). Although the second harmonic (first overtone) was detected in both analyses, the signal was more sharply
detected in the Lasso analysis. The strength of the second harmonic tends to increase when the frequency of the
fundamental tone decreases. This feature is less apparent in the STFT analysis. The comparison suggests that
both STFT and Lasso methods can be equally used in analysis of song with relatively slow frequency modulation.
The difference may be more striking when more rapid frequency modulations are involved.

This result for the Lasso analysis can be reproduced by the following code:

library(tuneR)

source("lassobase.R")

s <- readMP3("XC214244.mp3")

y <- s@left

rate <- s@samp.rate

y <- y - mean(y)

x <- (1:length(y))/rate * 1000

d <- data.frame(V1=x,V2=y)

pgm <- getpergrmlasso2(d,2650,2830,2,12,100,4,0.8)

drawpgmlasso(pgm,0,0,8,5,xlab="Time (msec)",ylab="Frequency (kHz)")

4.3 Analysis of a call of a Crested Honey Buzzard

In this case, I deal with a call with structures. The Crested Honey Buzzard (Pernis ptilorhynchus) is a diurnal
raptor species. The call is described as “high, four-note whistle wee hey wee hey or pii-yoo pii-ee, or a whistled
scream kleeeur during breeding season” (Brazil 2009).8 Kabaya and Matsuda (2001) described: “The voice is
around 3 kHz. There is a short note pyu initially, then a prolonged iiii- voice followed by a slightly lower voice.
The entire voice has a falling intonation.” (translated from Japanese by myself).

Since the sonogram in Kabaya and Matsuda (2001) indicated the presence of a prolonged voice with a
constant frequency lasting 1 s overlapped on the rest of the notes, I examined how a Lasso two-dimensional
power spectrum can resolve these features. The voice was recorded by myself as in the case of the Eurasian
Wren. The result is shown in figure 4. The prolonged voice at 2.5 kHz is also seen in this spectrogram up to
1000 msec. Since this feature is seen in many other recordings of this species, it would be interesting to consider
the possibilities: (1) the bird continuously issued this frequency while issuing other frequencies, or (2) it is an
echoed signal of the initial note or (3) the vibration somehow persisted in the body of the bird. Although echoing
is a promising explanation, this recording was obtained in an open space and it seemed to me difficult to consider
a structure causing echoes within 150 m (the distance required from the duration of the signal). If the possibility
(1) is the case, this phenomenon is called polyphony and it suggests that the bird controls a pair of muscles of
the syrinx (vocal organ of birds) differently. Such a case is rarely documented in non-passerine birds (songbirds)
and would be worth studying in more detail.

7 <http://www.xeno-canto.org/>.
8 One might see how difficult it is to describe vocalizations of a bird by human language!
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Figure 3: Comparison of Lasso and STFT two-dimensional power spectra of a Common Chiffchaff Phylloscopus
collybita (XC214244 in xeno-canto). The time is in msec from the start of the audio file. (Upper) Amplitude
of the signal. (Middle) STFT two-dimensional power spectrum. 100 frequency bins and an 8 msec window size
shifted by 0.8 msec were used. The window size was optimized to obtain the best resolution. (Lower) Lasso
two-dimensional power spectrum. 100 frequency bins and a 4 msec window size shifted by 0.8 msec were used.
The signal is resolved more sharply than in the STFT analysis.
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(Upper) Amplitude of the signal. (Lower) Lasso two-dimensional power spectrum. 200 frequency bins and a
20 msec window size shifted by 3 msec were used. The complex structure of the vocalization is well depicted
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The entire sonogram is characterized by the variable fundamental frequency and the second (sometimes
the third) harmonic. Between 370 and 430 msec, the voice strength became smaller but with a higher (around
3.8 kHz) frequency with multiple frequency components. The entire sequence appears to match the description
of a four-note whistle by Brazil (2009), although many other notes of the same species are not as complex as this
one.

4.4 Analysis of call of an Eurasian Wren

In this case, I deal with a short call with complex structures. A comparison of Lasso and STFT spectra of a
call of an Eurasian Wren is shown in figure 5. This call is typical for this species, and I call this type of call
“usual call”. This call is short and rich in rapidly varying signals. Although the STFT analysis, which has been
optimized for resolutions, showed the signal as a barely resolved band with rapid frequency modulations, the
Lasso analysis clearly showed that this signal is composed of rapidly varying closely separated frequencies. These
frequencies varied in parallel.

Such a pattern of frequencies can be interpreted in two ways: (a) They are adjacent higher harmonics. (b)
They are the result of amplitude variation of a single frequency. Consider the following equation in which f and
fm are the original frequency and the frequency of amplitude modulation, respectively (usually fm ≪ f). The
relative amplitude of the modulation is given as a.

signal = {1 + a sin(2πfmt)} sin(2πft) = sin(2πft) +
a

2
[cos{2π(f − fm)t} − cos{2π(f + fm)t}] (8)

In the resultant power spectrum, two close frequencies f ± fm appear in addition to the central frequency f .
I consider the interpretation (b) more likely since the amplitudes showed periodic modulations directly visible

to the eyes (upper panel of figure 5), and both the central and pararell frequencies are present and the strengths
of the pararell frequencies are almost the same. By numerical experiments with artificially modulated data, a
90% modulation in the amplitude is required to reproduce the pattern in the spectrogram of this recording. This
is in agreement with the actual amplitude variation.

In variable stars, two closely separated frequencies can cause a beat phenomenon. In such cases, however,
the strengths of the signals are different and the resultant amplitude modulations due to the beat phenomenon
are smaller than in the present case. Frequency analysis of variable stars with amplitude modulations requires
attention in interpreting the spectrogram as in the present case.

4.5 Different types of calls in the Eurasian Wren

Since many avian species have rich vocabularies in calls, the characteristics of a call of the Eurasian Wren
described in subsection 4.4 may not be applicable to different types of calls of the same species. In figure 6, I
show two samples (XC192853, XC192854) of the alarm call and one sample (XC194033) of the trill-type call (call
composed of quickly repeated short notes) of the same species in Japan. The same duration (35 msec) is used
for analysis. In the alarm call, the initial part of the note is characterized by a single rising frequency in contrast
to the usual call. In the trill-type call, the structure is simple without closely separated multiple frequencies.
The frequency of the trill-type call more quickly decreases within a single note than in the usual call. We can
see that closely separated multiple frequencies (probably reflecting amplitude modulation) are not always seen in
this species.

4.6 Comparison between subspecies of the Eurasian Wren

I have made a comparative analysis of subspecies using xeno-canto database to see whether the spectral character-
istics I found (subsection 4.4) are unique to the Japanese subspecies fumigatus or are useful in broadly identifying
the species. Out of 22 subspecies listed in xeno-canto archive, I analyzed indigenus, zetlandicus, szetschuanus
and taivanus.

The results are shown in figure 7. Although one of them (XC23363) is labeled as the alarm call, all the
sounds have characteristics similar to the usual call recorded in Japan in that they show closely separated
multiple components with decreasing frequencies. Since these subspecies are widespread around the Palearctic,
it is highly likely this frequency structure is common to other subspecies of the Eurasian Wren, and can be used
for species identification. The result of XC23363 (szetschuanus) even more clearly illustrates the presence of
equally spaced multiple frequencies than in Japanese recordings. The overall analysis suggests that the frequency
structures of calls in the Eurasian Wren are highly conserved between different subspecies.
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optimized to obtain the best resolution. (Lower) Lasso two-dimensional power spectrum. 100 frequency bins and
a 2 msec window size shifted by 0.4 msec were used. Around the strongest part of the sound, the signal is split
into three frequencies in Lasso analysis.
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Figure 6: Lasso spectral analysis of different types of calls of the Eurasian Wren in Japan. The initial one (comp)
is the same as the one we used in subsection 4.4.
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Figure 7: Lasso spectral analysis of different subspecies of the Eurasian Wren.



15

5 Code (lassobase.R)

This code is also available at <http://www.kusastro.kyoto-u.ac.jp/∼tkato/pub/lassobase.R>.

# The first part is the same as in Kato and Uemura (2012)

# Publications of the Astronomical Society of Japan, 64, 122

library(lars)

library(glmnet)

seqfreq <- function(a,b,...) {

return(1/seq(1/b,1/a,...))

}

makematlasso <- function(d,p,ndiv) {

nd <- length(p)

m <- matrix(0,nrow(d),nd*ndiv)

for (i in 1:nd) {

ph <- ((d$V1/p[i]) %% 1)*pi*2

for (j in 0:(ndiv-1)) {

m[,i+nd*j] <- sin(ph+pi*j/ndiv)

}

}

return(m)

}

perlasso <- function(d,p,ndiv=2,alpha=1,

cv=FALSE) {

nd <- length(p)

mat <- makematlasso(d,p,ndiv)

y <- d$V2 - mean(d$V2)

m <- glmnet(mat,y,alpha=alpha)

ndim <- m$dim[2]

pow <- matrix(0,nd,ndim)

for (i in 1:ndim) {

v <- m$beta[,i]

for (j in 0:(ndiv-1)) {

pow[,i] <- pow[,i] +

v[(nd*j+1):(nd*(j+1))]^2

}

}

nmin <- NULL

gcv <- NULL

if (cv) {

gcv <- cv.glmnet(mat,d$V2,alpha=alpha)

minl <- gcv$lambda.min

nmin <- which.min(abs(

m$lambda-gcv$lambda.min))

}

r <- list(pow=pow,p=p,lambda=m$lambda,

nmin=nmin,m=m,gcv=gcv,mat=mat)

class(r) <- c("lassopow",class(r))

return(r)

}

plot.lassopow <- function(pow,n,...) {
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p <- pow$p

pw <- pow$pow

plot(p,pw[,n],typ="l",xlab="Period",

ylab="Relative Power",...)

}

minper <- function(pow,n,num=1) {

p <- pow$p

pw <- pow$pow

pp <- numeric()

while (num > 0) {

i <- which.max(pw[,n])

pp <- c(pp,p[i])

num <- num-1

pw[i,n] <- 0

}

return(pp)

}

lassofit <- function(pow,x,n,ndiv=2) {

d <- data.frame(V1=x,V2=numeric(length(x)))

m <- pow$mat

return(m %*% pow$m$beta[,n])

}

lassoexpect <- function(pow,x,n,ndiv=2) {

d <- data.frame(V1=x,V2=numeric(length(x)))

m <- makematlasso(d,pow$p,ndiv)

return(m %*% pow$m$beta[,n])

}

# 2-D version

pergrmlasso <- function(d,fmin,fmax,div) {

d$V1 <- d$V1 - mean(d$V1)

d$V2 <- d$V2 - mean(d$V2)

p <- seq(fmin,fmax,length=div+1)

pl <- perlasso(d,1/p)

las <- list(pow=pl$pow,p=pl$p,lambda=pl$lambda)

r <- list(period=p,lassopow=las)

class(r) <- c("PergrmLasso",class(r))

return(r)

}

pergrm2dlasso2 <- function(d,fmin,fmax,div,len,step) {

nd <- floor((diff(range(d$V1))-len)/step+1)

lst <- list()

st <- min(d$V1)

cat("bins="); cat(nd); cat("\n")

for (i in 1:nd) {

t <- subset(d,V1 >= st+step*(i-1) & V1 < st+len+step*(i-1))

if (nrow(t) > 10) {

p <- pergrmlasso(t,fmin,fmax,div)

} else {

p <- NA

}
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lst[[i]] <- p

}

return(lst)

}

getpergrmlasso2 <- function(d,start,end,fmin,fmax,div,len,step) {

# range should be expressed in frequency

orgdata <- d

d <- data.frame(V1=d$V1,V2=d$V2)

f <- subset(d,V1 > start & V1 < end)

r <- list(g=f,f=orgdata)

g <- r$g

f <- r$f

dt <- 1

lst <- pergrm2dlasso2(g,fmin,fmax,div,len,step)

yy <- seq(fmin,fmax,length=div+1)

nd <- floor((diff(range(g$V1))-len)/step+1)

xx <- min(g$V1)+(0:(nd-1))*step+len/2

r <- list(lst=lst,d=orgdata,f=f,g=g,xx=xx,yy=yy,len=len,dt=dt)

class(r) <- c("Pergrm2lasso",class(r))

return(r)

}

drawpgmsub <- function(pgm,pp,powmin,powmax,xlab,ylab) {

d <- pgm$d

xx <- pgm$xx

yy <- pgm$yy

dt <- pgm$dt

len <- pgm$len

freq <- pgm$freq

def.par <- par(no.readonly = TRUE)

mat <- matrix(c(1,1,2,2,2), 5, 1, byrow = TRUE)

layout(mat)

par(mar=c(2,5,0,4))

par(oma=c(1,0,4,0))

par(cex.lab=1.4)

par(cex.axis=1.2)

xlim <- c(min(xx)-dt*len/2,max(xx)+dt*len/2)

plot(d$V1,d$V2,xlim=xlim,ylim=range(d$V2),typ="l",

xaxs="i",pch=19,cex=0.3,xlab="",ylab="amplitude")

par(mar=c(4,5,0,4))

image(x=xx,y=yy,z=pp,xlim=xlim,

zlim=c(powmin,powmax),col=gray.colors(100,start=1,end=0,gamma=2),

xlab=xlab,ylab=ylab)

par(def.par)

}

drawpgmlasso <- function(pgm,n,powmin,powmax,dup=0,

xlab="Time (d)",

ylab="Frequency (c/d)",

loglambda=TRUE) {
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if (!inherits(pgm,"Pergrm2lasso")) {

stop("only Pergrm2lasso class can be drawn")

}

nn <- length(pgm$lst)

pp <- matrix(0,nn,length(pgm$yy))

zerovec <- rep(0,length(pgm$yy))

if (dup == 0) {

dwin <- 1

} else {

dwin <- 10^(-abs(((-dup):dup)/dup*10))

}

for (i in 1:nn) {

if (is.na(pgm$lst[[i]][1])) {

pw <- zerovec

} else {

if (loglambda == FALSE) {

pw <- pgm$lst[[i]]$lassopow$pow[,n]

} else {

ni <- which.min(abs(log10(pgm$lst[[i]]$lassopow$lambda)-n))

pw <- pgm$lst[[i]]$lassopow$pow[,ni]

}

}

for (j in (-dup):dup) {

if (i+j > 0 && i+j <= nn) {

pp[i+j,] <- pp[i+j,] + dwin[j+dup+1]*pw

}

}

}

pp <- log10(pp)

pp <- ifelse(pp > powmax,powmax,pp)

drawpgmsub(pgm,pp,powmin,powmax,xlab,ylab)

}
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