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Abstract

We studied Romanov V48, which had been considered as a possible polar below the period minimum
(orbital period of 0.0420991 d). We analyzed the publicly available Zwicky Transient Facility data and found
that this object is an intermediate polar with an orbital period of 0.102312 d (in the period gap) and a spin
period of 0.0420991 d. The amplitude of the spin variation was very large (0.6 mag) and the profile has been
confirmed to vary with the beat period of 0.071534 d. The ratio between the spin and orbital periods was
large and the system resembles the intermediate polar DW Cnc below the period gap. Infrared emission from
Romanov V48, however, could not be explained by radiation from the secondary. The infrared excess and the
shape of the spectral energy distribution resembled those of polars, suggesting that the emission mechanism in
Romanov V48 is similar to those of polars. Romanov V48 may be an intermediate object between intermediate
polars and polars.

The object Gaia EDR3 2236896418906579072 at 20" 11™ 165825, +60° 04’ 28”04 (J2000.0) has BP=17.407,
RP=17.000 and a parallax w=0.693(65) mas (Gaia Collaboration et al. 2021). The variability of this ob-
ject was detected by the Asteroid Terrestrial-impact Last Alert System (ATLAS: Tonry et al. 2018) as ATO
J302.82014-60.0744 with a classification of “dubious” (unspecified variable stars not classified into the 12 cate-
gories including pulsating, eclipsing or other representative variables) (Heinze et al. 2018). Heinze et al. (2018)
gave a period of 0.081328 d (by Lomb-Scargle method: Scargle 1982). This object has an X-ray counterpart
of 1IRXS J201117.94600421. The Zwicky Transient Facility (ZTF: Masci et al. 2019) also detected the variabil-
ity of this object and listed it as a candidate variable star with a range of 16.783-18.188 mag and a possible
period of 0.0404 d (Ofek et al. 2020). Using Gaia DR2 (Gaia Collaboration et al. 2018), Mowlavi et al. (2021)
selected candidate variable stars and listed this object as a short time-scale candidate (DR2_STS). The catalog
by Mowlavi et al. (2021) was released in 2020 September in arXiv.

One of the authors (Filipp Romanov, hereafter FR) noticed this object when comparing X-ray sources
(such as ROSAT sources) and ultraviolet-excess objects (GALEX: Martin et al. 2005) with blue stars on the
Aladin Sky Atlas to search for cataclysmic variables (CVs). FR was the first to correctly identify the period of
0.0420991 d using ZTF DR4 and the Pan-STARRS1 (PS1: Chambers et al. 2016) surveys. Sebastian Otero, the
chief supervisor of the American Association of Variable Stars (AAVSO) Variable Star Index (VSX: Watson et al.
2006) suggested a classification of a candidate polar (AM:). FR reported these results to the AAVSO VSX with
the name of Romanov V48 on 2021 February 23'. We hereafter use this designation for this object.

L<https://www.aavso.org/vsx/index.php?view=detail.top&oid=2215537>.
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Figure 1: Long-term ZTF light curve of Romanov V48.

Since the period is far shorter than the “period minimum” of CVs (Kolb 1993; Howell et al. 1997; Génsicke et al.
2009; Knigge 2006; Knigge et al. 2011; Kato 2022), we made a more detailed analysis and tried to clarify the
nature of the object. We analyzed the light variation using the ZTF public data?. The long-term variation is
shown in figure 1. There was no difference between g, r and ¢ light curves and there was no high/low states which
are usually seen in many polars. There was one sequence of time-resolved photometry in the ZTF data (figure 2).
The presence of flickering is characteristic to a CV. The box-shaped, large-amplitude (0.7 mag) orbital variation
is similar to that of a polar and does not resemble the orbital variation of a dwarf nova. A phase dispersion
minimization (PDM: Stellingwerf 1978) analysis of the ZTF data confirmed the period detected by FR (figure 3).
The period was determined to be 0.04209909(2) d, whose error was estimated by the methods of Fernie (1989)
and Kato et al. (2010). The light curve phased with this period is shown in figure 4. There is no difference in the
profile between the three ZTF bands and the colors were almost zero. The presence of two maxima of different
amplitudes within one phase excludes the possibility of the double period being the true one.

Baran et al. (2021) reported on a search for pulsating subdwarf B star using the Transiting Exoplanet
Survey Satellite (TESS) full frame images and Romanov V48 was included in their sample (under the name
of 2236896418906579072). Baran et al. (2021) included this object among 30 sdBV candidates that were not
spectroscopically classified (in their table 3 and figure 7). Although the power spectrum by Baran et al. (2021)
detected the period we determined at 275uHz, Baran et al. (2021) did not mention it. The signal at 113uHz in
Baran et al. (2021) is indeed present in the ZTF data. The period has been determined to be 0.1023116(4) d
(figure 5). The amplitude of the 0.1023116-d period was 0.4 mag, smaller than that of the 0.04209909-d period.
We could not detect a signal around 12uHz (=0.96 d) in the ZTF data. We refer to the 0.04209909-d period as
P; 0.1023116-d period one as P,. The maxima can be expressed as

Max (P;) (BJD) = 2458718.664(1) + 0.04209909(2) E (1)

and
Max (Pz) (BJD) = 2458718.657(1) + 0.1023116(4) E. (2)

The presence of two periods P; and P, suggests an intermediate polar (IP). In this interpretation, P» is the
orbital period (Py,p) and it is in the period gap. In this case, we can expect a signal at the beat period between

2The ZTF data can be obtained from IRSA <https://irsa.ipac.caltech.edu/Missions/ztf.html> using the inter-
face <https://irsa.ipac.caltech.edu/docs/program _interface/ztf api.html> or using a wrapper of the above IRSA API
<https://github.com/MickaelRigault /ztfquery>.
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Figure 2: ZTF light curve of Romanov V48 on 2020 July 5. Flickering and large-amplitude orbital variation are
present.

Py (spin period) and P,. This is indeed the case and a period P3=0.0715335(2) d was detected (figure 6). This
signal was not apparent in the figure of Baran et al. (2021). The ephemeris is

Max (P3) (BJD) = 2458718.668(1) + 0.0715335(2) E. (3)

This period reflects the period in which the beamed light from the magnetic poles on the white dwarf sweeps
the surface of the secondary. The existence of this period is a strong support to the IP interpretation. We could
detect systematic variations of pulse profiles depending on the beat phase (figure 7). These variations reflect the
geometry of the magnetic poles against the accretion stream from the secondary.

IPs inside or below the period gap are relatively rare and well-established ones having P,,1, shorter than Ro-
manov V48 are: V455 And (Araujo-Betancor et al. 2005), HT Cam (Tovmassian et al. 1998; Kemp et al. 2002),
V1025 Cen (Buckley et al. 1998; Hellier et al. 2002), DW Cnc (Patterson et al. 2004), EX Hya (Sterken et al.
1983; Jablonski and Busko 1985), CC Scl (Woudt et al. 2012; Kato et al. 2015), AX J1853.3—0128, IGR J18173—
2509 (Thorstensen and Halpern 2013) and Swift J0503.7—2819 (Halpern and Thorstensen 2015). According to
Koji Mukai’s “The Intermediate Polars” page?, only one IP was plotted on his diagram [V515 And: (Butters et al.
2008; Kozhevnikov 2012); Pyp has not been directly determined]. Many IPs follow the relation between spin
period (Pspin) and Py, on the line Pypin/Porb >~ 0.1 or less (Patterson 1994). Among the objects listed, V1025
Cen, DW Cnc, EX Hya and IGR J18173—2509 are the exceptions. Norton et al. (2008) explained a larger fraction
of IPs having large Pspin/Porb in short- Py, systems considering the evolution and the spin equilibrium. Romanov
V48 appears to be most similar to DW Cnc although Romanov V48 is in the period gap and has larger amplitudes
of spin pluses. The absolute magnitude of Romanov V48 (M =+6.5) is the brightest among these objects except
IGR J18173—2509 whose distance is unknown.

Romanov V48 has an excess infrared emission in 2MASS J, H (Cutri et al. 2003) and the Wide-field Infrared
Survey Explorer (WISE: Wright et al. 2010) W1 and W2 bands (the object was below the detection limit in
2MASS K, WISE W3 and W4). Even a donor with an evolved core [such as in QZ Ser (Thorstensen et al.
2002)| cannot explain the spectral energy distribution (SED) in the infrared, while the infrared SED of DW Cnc
is on the Rayleigh-Jeans tail of a hot object (figure 8). The infrared excess resembles that of a polar as shown
in the figure. IPHAS J052832.69+283837.6 was chosen as an example of a polar (Borisov et al. 2016) [see e.g.
Harrison and Campbell (2015) for infrared SEDs of other polars]. The infrared excess in Romanov V48 may
suggest that the emission mechanism in this system is similar to those in polars. The large amplitudes of the spin
pulses may also suggest a magnetic field stronger than the majority of IPs. Having a large Pipin/Porb, Romanov
V48 may be an intermediate object between IPs and polars. Polarimetric, X-ray and spectroscopic observations
are encouraged.

3 <https://asd.gsfc.nasa.gov/Koji.Mukai/iphome/iphome.html>.
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Figure 3: PDM analysis of Romanov V48 using the ZTF data of the shorter period (P;) = spin period. (Upper):
PDM analysis. The bootstrap result using randomly contain 50% of observations is shown as a form of 90%
confidence intervals in the resultant # statistics. (Lower): mean profile. 1o error bars are shown.
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Figure 4: The light curve of Romanov V48 using the ZTF data folded by P;. The zero epoch was chosen as BJD
2458718.664.
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Figure 5: PDM analysis of the longer period (P») = orbital period of Romanov V48 using the ZTF data. (Upper):
PDM analysis. (Lower): mean profile.
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Figure 6: PDM analysis of the beat period (P3) of Romanov V48 using the ZTF data. (Upper): PDM analysis.
(Lower): mean profile.
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Figure 7: Variation of pulse profiles of Romanov V48 depending on the beat phase (¢). The beat phases ¢ were
determined using the equation (3). The pulse phases were determined using the equation (1). All bands of the
ZTF data were combined.
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Figure 8: The spectral energy distribution (SED) of Romanov V48 (filled squares). The figure is based on SDSS
(York et al. 2000; Ahumada et al. 2020) «’,¢’,r’,i’,z" magnitudes, 2MASS J, H, K, magnitudes and WISE W1-
W4 magnitudes. Zero-point calibrations of the 2MASS magnitudes used Cohen et al. (2003). The short-Pi,p,
intermediate polar DW Cnc (green circles) and the short-P,,p, polar IPHAS J052832.69+283837.6 (red circles)
are shown for a comparison. The arrows represent upper limits. The error bars represent 1o errors arising from
photometric errors only. lo errors arising from the uncertainty in the distance of Romanov V48 are 0.20 mag.
The curves represent the expected black-body radiation for the secondary filling the Roche lobe of a binary
with a period of 0.10231 d at the distance of Romanov V48. Three combinations of the mass ratios (¢) and
temperatures are shown as a typical M-type star and extreme limits. Any donor filling the Roche lobe cannot
explain the infrared SED of Romanov V48.
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